Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 102, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589967

RESUMEN

BACKGROUND: Premature ovarian insufficiency (POI) is a major cause of infertility. In this study, we aimed to investigate the effects of the combination of bone marrow mesenchymal stem cells (BMSCs) and moxibustion (BMSCs-MOX) on POI and evaluate the underlying mechanisms. METHODS: A POI rat model was established by injecting different doses of cyclophosphamide (Cy). The modeling of POI and the effects of the treatments were assessed by evaluating estrous cycle, serum hormone levels, ovarian weight, ovarian index, and ovarian histopathological analysis. The effects of moxibustion on BMSCs migration were evaluated by tracking DiR-labeled BMSCs and analyzing the expression of chemokines stromal cell-derived factor 1 (Sdf1) and chemokine receptor type 4 (Cxcr4). Mitochondrial function and mitophagy were assessed by measuring the levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), ATP, and the mitophagy markers (Drp1, Pink1, and Parkin). Furthermore, the mitophagy inhibitor Mdivi-1 and the mitophagy activator CCCP were used to confirm the role of mitophagy in Cy-induced ovarian injury and the underlying mechanism of combination therapy. RESULTS: A suitable rat model of POI was established using Cy injection. Compared to moxibustion or BMSCs transplantation alone, BMSCs-MOX showed improved outcomes, such as reduced estrous cycle disorders, improved ovarian weight and index, normalized serum hormone levels, increased ovarian reserve, and reduced follicle atresia. Moxibustion enhanced Sdf1 and Cxcr4 expression, promoting BMSCs migration. BMSCs-MOX reduced ROS levels; upregulated MMP and ATP levels in ovarian granulosa cells (GCs); and downregulated Drp1, Pink1, and Parkin expression in ovarian tissues. Mdivi-1 significantly mitigated mitochondrial dysfunction in ovarian GCs and improved ovarian function. CCCP inhibited the ability of BMSCs-MOX treatment to regulate mitophagy and ameliorate Cy-induced ovarian injury. CONCLUSIONS: Moxibustion enhanced the migration and homing of BMSCs following transplantation and improves their ability to repair ovarian damage. The combination of BMSCs and moxibustion effectively reduced the excessive activation of mitophagy, which helped prevent mitochondrial damage, ultimately improving ovarian function. These findings provide a novel approach for the treatment of pathological ovarian aging and offer new insights into enhancing the efficacy of stem cell therapy for POI patients.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Moxibustión , Insuficiencia Ovárica Primaria , Humanos , Femenino , Ratas , Animales , Mitofagia , Especies Reactivas de Oxígeno/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/efectos adversos , Carbonil Cianuro m-Clorofenil Hidrazona/metabolismo , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/terapia , Insuficiencia Ovárica Primaria/patología , Ciclofosfamida/efectos adversos , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/metabolismo , Hormonas/efectos adversos , Hormonas/metabolismo , Adenosina Trifosfato/metabolismo
2.
Cell Death Dis ; 15(1): 52, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225227

RESUMEN

Ubiquitination of mitochondrial proteins plays an important role in the cellular regulation of mitophagy. The E3 ubiquitin ligase parkin (encoded by PARK2) and the ubiquitin-specific protease 30 (USP30) have both been reported to regulate the ubiquitination of outer mitochondrial proteins and thereby mitophagy. Loss of E3 ligase activity is thought to be pathogenic in both sporadic and inherited Parkinson's disease (PD), with loss-of-function mutations in PARK2 being the most frequent cause of autosomal recessive PD. The aim of the present study was to evaluate whether mitophagy induced by USP30 inhibition provides a functional rescue in isogenic human induced pluripotent stem cell-derived dopaminergic neurons with and without PARK2 knockout (KO). Our data show that healthy neurons responded to CCCP-induced mitochondrial damage by clearing the impaired mitochondria and that this process was accelerated by USP30 inhibition. Parkin-deficient neurons showed an impaired mitophagic response to the CCCP challenge, although mitochondrial ubiquitination was enhanced. USP30 inhibition promoted mitophagy in PARK2 KO neurons, independently of whether left in basal conditions or treated with CCCP. In PARK2 KO, as in control neurons, USP30 inhibition balanced oxidative stress levels by reducing excessive production of reactive oxygen species. Interestingly, non-dopaminergic neurons were the main driver of the beneficial effects of USP30 inhibition. Our findings demonstrate that USP30 inhibition is a promising approach to boost mitophagy and improve cellular health, also in parkin-deficient cells, and support the potential relevance of USP30 inhibitors as a novel therapeutic approach in diseases with a need to combat neuronal stress mediated by impaired mitochondria.


Asunto(s)
Células Madre Pluripotentes Inducidas , Estrés Oxidativo , Trastornos Parkinsonianos , Ubiquitina-Proteína Ligasas , Humanos , Carbonil Cianuro m-Clorofenil Hidrazona/efectos adversos , Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Trastornos Parkinsonianos/patología , Ubiquitina-Proteína Ligasas/genética
3.
FEBS Lett ; 594(5): 823-840, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31693752

RESUMEN

Selective autophagy for the elimination of aberrant mitochondria, termed mitophagy, can be regulated by the kinase PINK1 and the ubiquitin ligase Parkin. The lysosome-associated membrane protein 2 (LAMP-2) plays diverse functions in non-selective autophagy, chaperone-mediated autophagy and selective autophagy for the degradation of RNA/DNA. In the present study, we investigated whether LAMP-2 plays important roles during PINK1/Parkin-mediated mitophagy. The results obtained clearly show that knockdown of LAMP-2 does not cause defects in mitophagy in HeLa cells stably expressing Parkin, indicating that LAMP-2 is dispensable for PINK1/Parkin-mediated mitophagy. The present study is the first to determine the potential role of LAMP-2 in PINK1/Parkin-mediated mitophagy, thereby providing more insight into the sophisticated process of mitophagy.


Asunto(s)
Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Mitocondrias/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/efectos adversos , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Mitofagia/efectos de los fármacos , Proteínas Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...